正子斷層掃描8大優勢2024!(小編推薦)

此外;利用鎵-68標化octreotide (一種八個胺基酸的體抑素類似物) 得到體抑素接受體 的影像則是目前偵測神經內分泌腫瘤的新方向。 正子斷層掃描 近幾年來,隨著科技的進步與發展,產生了本次課題所探討高階全身影像檢查孰優劣的另一魚與熊掌可以兼得的解答-結合了正子斷層的功能性影像,以及磁振造影的軟組織高解析特性的PET/MRI:磁振暨正子掃描同步掃描儀。 國內目前僅有台大醫院及林口長庚兩間醫院使用,本院現今亦計劃設置,以期望能夠提供更進一步的服務。 目前根據已有的研究指出PET/MRI系統相較於過去傳統檢查,能提供更多資訊在腦部、乳房、肝臟、腎臟以及骨關節軟組織;而且取代電腦斷層,輻射劑量亦可降低到原先的1/3左右。 然而此先進檢查亦有隨之取代了電腦斷層所對應的缺點,如缺少了對於正子影像關鍵的衰減校正資訊、對於肺實質疾患的解析度較差以及造影時間較現今的正子電腦斷層系統為長等。 雖然有上述之缺點,但此一問世不到10年的全新技術在未來仍充滿了發展可能性,期待將來在技術上的突破,以及在臨床使用的普及性,可帶來民眾更多服務的可能性。

正子斷層掃描

低劑量的電腦斷層掃描(LDCT),目前沒有發現會引起長期傷害。 但如果是高劑量的電腦斷層,就可能增加罹患癌症的機率,但這個機率不高。 ,如果心臟血流灌注13N-NH3PET掃描出現灌注異常,表示局部心肌血流減少。 FDG檢查出現代謝降低的現象,表示此局部的心肌泰半壞死結疤,即使作血管汽球擴張或冠狀動脈繞道手術,亦無法改善心臟的功能。

正子斷層掃描: 正子斷層掃描簡介

正子電腦斷層掃描在計算影像的衰減校正比起傳統的正子掃描快速許多,因此病患接受掃描的時間大為縮短,使檢查更為舒適。 而正子電腦斷層掃描可精確的指出代謝異常最為嚴重的區域,對進一步需要切片檢驗的病灶,可引導至最精確的位置,避免切到不是真實病灶的地方而造成誤判。 雖然目前健保給付範圍限於腫瘤的診斷、分期,與再分期,不過因為正子電腦斷層掃描精確定位的特性,其應用於腫瘤治療效果的監測,及放射治療的治療計畫,都是醫學界目前努力研究的課題,使其在癌症治療中扮演更積極的角色。

掃描前,醫護人員會安排病人去洗手間,然後到掃描室開始檢查,檢查需時約20至60分鐘。 儘管正電子掃描帶有輻射,但病人接受檢查的好處一般大於輻射風險。 本中心會在不影響影像質素的情況下使用低輻射劑量掃描,以將病人所吸收的輻射劑量降到最低。 PET 掃描是一種先進的醫學影像檢查,可提供某個身體器官或系統功能的詳細訊息,常用作評估和診斷癌症、腦部神經系統失調和心血管疾病。 在電腦斷層檢查中,可以輕易地看見骨骼等細密的物質,但是軟組織卻顯示不清,讓照片「變糊」。

正子斷層掃描: 應用

不過,放射同位素藥物亦有可能在極少數情況下引起嚴重的過敏反應。 正子造影基本上可視為分子影像的一環,我們知道,分子影像最重要的目標在探索活體內生物學與生化學的處理過程,以期得到與疾病診斷或治療上相關聯的資料,而正子造影則提供包括葡萄糖代謝影像、細胞增生影像、氧代謝影像、接受體分佈影像及報導基因影像提供重要的分子影像。 癌症時鐘年年加快,為了預防及提早篩檢,不少人會選擇送父母親一份全身性健康檢查作為孝親禮物。 不過,就有執業醫師指出,近年非常熱門的「正子斷層造影掃描」因為高輻射量,等於一場「核彈級」的輻射破壞,反而更容易對健康的身體造成危害,事實上,正子斷層的輻射量是否真有致癌風險?

病人離開前,醫護人員會用輻射量度儀器在一米距離為病人量度身體殘餘輻射量。

正子斷層掃描: 電腦斷層 (Computed tomography,CT)

要真正了解正子電腦斷層掃描這項新科技,必須先知道正子掃描與電腦斷層掃描之間的基本差異,再來探討兩者結合於一的好處。 電腦斷層掃描,是目前各醫院普遍使用的診斷儀器,它利用X光穿透人體的過程中,正常與病變的組織對於X光的阻隔能力不同,來檢視病患體內的可能病變結構。 然而,對於某些惡性腫瘤和部分良性病灶如壞死、結痂或肉芽組織等,常因具有相同的結構變化,而無法區分病灶為良性或惡性。 此外,電腦斷層掃描對於腫瘤病變的判定,常需以「大小」作為診斷的依據。

若病人體内有癌細胞病變,相對多的放射同位素藥物便會積聚於病變組織。 由於聚集於體內的FDG會釋放輻射(伽馬射線),PET的接收器會將偵測到的輻射造成PET影像,因此吸收較多FDG的癌細胞將會更為突顯。 此外,如身體出現炎症,患處亦會積聚較多FDG ,PET-CT掃描從而亦可有助精確偵察發生炎症的位置。 主要的正子放射同位素有氧-15、氮-13、 碳-11及氟-18,這些同位素可合成許多體內存在或需要的代謝分子,如葡萄糖、胺基酸等,可作為研究探討人體正常或病態的代謝功能。 目前在臨床上最常使用的正子同位素藥物是去氧葡萄糖(2-fluoro-2-deoxy-D-glucose, 簡稱FDG)。 上述四種短半衰期的正子同位素是經由迴旋加速器製造出來的,因半衰期短,因此正子斷層掃描設備通常都設置在迴旋加速器附近,方便取得檢查用藥。

正子斷層掃描: 掃描器

而且這些變化與癌細胞分化及分裂生成速率之間有相關性,同時也與FDG的攝取速率有相關性。 因此,我們可以利用癌細胞的這一個特性,使用FDG PET來進行癌症病灶的造影。 PET/MRI 目前被用在腫瘤學、心臟病學及腦神經科學中、以及奈米載體藥物和腫瘤標靶藥物的效果偵測和甲狀腺癌手術治療前及放療的術前評估等。 它有檢測時間短,輻射量較少、PET 及 MRI 影像融合時不會產生對位 失真和診斷價值高的優點。

正子斷層掃描

PET影像資料如配合動脈血中正子同位素藥物濃度資料以代謝模式加以運算,可求得單位組織代謝速率,例如:使用FDG可測得每單位組織每分鐘代謝多少分子的葡萄糖, 使用15O-水可測定每單位組織的血流、血量等。 不過這些測定需連續抽取動脈血化驗,比較麻煩,只用於研究,較少用於臨床服務。 由於PET影像主要提供代謝功能影像,判讀時可能需要放射線電腦斷層或磁振造影參考病灶及器官之相關位置。 目視判讀是最常用的方法,但以影像融合方式將解剖結構影像與PET功能影像結合, 更能精確地顯示出異常病灶的位置及代謝異常的程度。 目前更有儀器廠將CT與PET結合,可更方便快速地提供融合影像。 目前國內外使用最多的放射性同位素即為氟化葡萄糖,可提供全身葡萄糖代謝的功能性影像;此特性在偵測具高葡萄糖代謝表現的腫瘤時(如肺癌、大腸直腸癌、淋巴癌、黑色素癌、食道癌、頭頸部癌、乳癌、子宮頸癌)可顯示出優越的敏感性;然而在其他癌症便可能會有較高的偽陰性。

正子斷層掃描: 正子斷層掃描檢查步驟

正子掃描在癌症、心臟及腦部疾病的臨床價值,已深受醫學各界肯定,尤其對於癌症診斷、分期、與再分期,是目前臨床上應用最廣泛的項目。 正子斷層掃描 美國健康保險 於1998 年間陸續通過多項癌症、心臟及腦部疾病的健保給付,而我國也於今年7月起,將正子掃描正式納入健保給付之中,提供國人更高品質的醫療服務。 公元2000 年,PET/CT 正子電腦斷層掃描儀更被美國時代雜誌 評選為年度發明產品,肯定其在醫療科學上的貢獻。

  • 檢查前,多數醫院會請患者脫去衣物和首飾,換上醫院提供的檢查衣。
  • 如果醫院不提供檢查衣,患者應穿輕便、寬鬆的衣服,衣服上不要有金屬鈕扣、拉鍊和裝飾,因為金屬物會干擾掃描儀的運作。
  • 因此,一旦氟化脫氧葡萄糖進入細胞,在氟-18衰變前,較長時間內都會以磷酸化形式留在細胞內。
  • 正子掃描 的基本原理,是先給予病患注入正子追蹤劑,而追蹤劑會集中跑到代謝功能異常的特定細胞內,再由正子掃描儀造影得到影像。
  • 低劑量的電腦斷層掃描(LDCT),目前沒有發現會引起長期傷害。

為了清楚地辨識這些軟組織,患者在接受某些電腦斷層掃描前,要先攝入一種特殊的物質——顯影劑。 它利用一種特殊的X光束,環繞照射病人的身體部位,再經過電腦處理,形成某個器官、骨頭、組織的橫截面圖片;這些平面的圖片合在一起,就形成了立體的圖像。 就像把一塊麵包一片片切開來,你可以看到每一片麵包長什麼樣,也能看到整塊麵包是什麼模樣。

正子斷層掃描: 正子斷層掃描獨特優點

我們的鄰近國家─日本也有21個迴旋加速器中心及35座正子電腦斷層掃描儀。 中國台灣於1992年11月由政府斥資於台北榮民總醫院成立“北部國家多目標醫用迴旋加速器中心”,北部台大醫院亦於八1995年3月由該院預算設置中國第二部正子斷層掃描儀。 中部中山醫學院急起直追1998年購置三部正子電腦斷層掃描儀,並於1999年4月已開始運轉,服務中部病患。 正子斷層掃描 過往的數據顯示,正電子掃描所發放的低劑量輻射並不會對病人造成傷害。 至於需要重複接受多次正電子掃描、電腦掃描和X光檢查的病人,則有可能增加將來患癌症的風險,此類病人宜與醫生商討檢查安排。

正子斷層掃描

不過,氟-18去氧葡萄糖正子電腦斷層掃描(FDG-PET/CT scan)還是有其侷限性,像是用來篩檢肝癌、胃癌及胰臟癌等惡性腫瘤的準確率就不高。 此外,肺結核發炎細胞及其他發炎組織也會吸收FDG,出現偽陽性,讓受檢者活在可能罹癌的恐懼陰影中。 相反的,有些腫瘤細胞分化較完整、生長速度慢或太小,不見得會吸收葡萄糖,可能就無法顯影,易被判斷為正常細胞。 因此,PET的檢查結果若為陽性,需要再搭配相關癌症的其他檢查以便確診:反之若PET檢查正常,也無法100%斷定沒有癌症,一旦有不適症狀仍須積極就醫檢查。 同時結合分子代謝及解剖雙重影像資料的正子電腦斷層掃描,可精準的用於全身腫瘤偵測,因而可協助臨床醫師更正確、更有效率的擬定腫瘤治療的策略,對於癌症病患有莫大的幫助。 我們也期待在健保制度的改變下,正子電腦斷層掃描能嘉惠更多的病患,以達到最好的醫療照護品質。

正子斷層掃描: 輻射

磁振造影是一利用強大磁場,利用特定的射頻無線電波脈衝,激發人體組織內的氫原子核。 再偵測病人所釋出的回波,便可以計算重組出體內各部位的斷層面高解析的解剖影像。 正子斷層掃描 由於是使用高磁場,具有整個檢查過程與空間不具輻射的優點,缺點是造影時間較長,對人體移動較敏感,且不適合身體內部有金屬植入物的受檢者。 病人為鼻咽癌患者,原本應接受放射治療,但在接受 正子掃描 後發現有肝臟的未預期遠處轉移,故除了放射治療又加上化學治療,以期達到較好的預後。

  • 不過這些測定需連續抽取動脈血化驗,比較麻煩,只用於研究,較少用於臨床服務。
  • 新光醫院核子醫學部陳世緯醫師接受《每日健康》專訪指出,正子掃描技術從問世以來,隨著器材與檢查的進步,斷層掃描的敏感度和解析度越來越好,檢查使用的輻射劑量已經從原本每次14毫西弗降至每次7毫西弗。
  • 嚴重腎衰竭或正在接受腎透析的患者,有機會因造影劑過敏而引起腎源性系統纖維化症。
  • 失智症(即痴呆症或亞次海默症Alzheimer’sdisease)在早期當臨牀上尚無法診斷之前,PET即可在特定之頂葉及顳葉顯示異常。
  • 三、正子造影目前的確還沒有證據說當作癌篩會有健康上顯著的效益(增加存活率), 可能需要更多研究來支持.
  • 正子掃描可提供細胞代謝的分子影像,電腦斷層掃描則具備優異的解剖定位功能,正子電腦斷層掃描同時結合了兩者之優點,可以更精確地找出病變所在,提供臨床醫師詳盡的資訊以選擇最佳的治療方式,台灣也於2014年7月起,將正子掃描正式納入健保給付中。

PET掃描器獲得的原始資料是一系列由探測器獲得,由正子與電子湮滅產生的一對光子的並行事件。 每個並行事件背後,有一個正電子逸出,從而引發一個湮滅事件,在空間中同時射出背向的兩個光子並被捕捉到。 顯影劑能阻止X光穿透軟組織,在照片上呈現出明顯的白色區,沒了它們的干擾,便能清楚的看見血管、器官和其它構造。

正子斷層掃描: 輻射致癌

正子斷層造影顧名思義是一種依靠正子的作用而得到的電腦斷層檢查,屬於核子醫學影像診斷。 PET與一般大家比較熟悉,在放射科做的電腦斷層檢查或磁振掃描基本上並不相同,而所謂的正子是一種帶正電荷的電子,必須由一種可以放射出正子的同位素藥物(正子藥劑)經衰變的過程而產生。 三、正子造影目前的確還沒有證據說當作癌篩會有健康上顯著的效益(增加存活率), 正子斷層掃描 可能需要更多研究來支持.

正子斷層掃描: 正子掃描檢查輻射劑量低

根據國健局2013年癌症年報中指出,每5分鐘就有一人被診斷癌症;且近十年來由於篩檢所發現的癌症人數比例也增加到11%,顯示國人健康意識的抬頭與自我健康評估的注重。 在癌症篩檢中、基本的影像檢查如X光、超音波、抽血檢查等項目篩檢率仍較高階全身性影像檢查有落差。 本篇將探討兩者在當作進階癌症全身性影像篩檢常被問及的問題:兩者的特色以及在癌症篩檢上孰優孰劣。 由於 正子掃描 的分子影像比傳統的解剖影像更能精確的評估癌症病患的疾病狀況,美國的健康保險已將正子掃描運用於肺癌、食道癌、大腸癌、淋巴癌、黑色素癌、乳癌、頭頸部癌、甲狀腺癌的診斷,分期與再分期納入保險給付之中。 其他保險給付項目還包括心肌血流、心肌存活及頑發型癲癇、阿茲海默症的評估。

正子斷層掃描: 顯影劑的副作用

除此之外,18F-FDG PET/CT搭配心臟血流灌注檢查,可輔助冠心疾病的診斷,評估梗塞後或心肌病變心肌的存活性,以及偵測血管粥樣硬化發炎程度。 應用於腦疾病的診療,可協助診斷失智症等退化性腦病變及癲癇病灶定位。 此外,長庚醫院及台北醫學院正與廠商議價中,三軍總醫院已編列預算及預留空間準備成立“迴旋加速器中心”,新光醫院及台中榮民總醫院正審慎評估,欲謀定而後動;惟獨南部地區尚無此計劃。 正子斷層掃描 國立成功大學醫學中心為南部醫學重鎮,位居雲、嘉、南、高屏地理位置之中心,為嘉惠南部病患,並提升南部醫學及基礎科學研究水準,實有必要籌設“南部國家醫用迴旋加速器及正子斷層掃描中心”。 建議糖尿病患者在檢查前一天正常使用胰島素和口服血糖藥物,如檢查無須注射顯影劑,只需要於檢查當日(午夜十二時後)停止使用藥物;如檢查需要注射顯影劑,則需要在檢查當日及檢查後兩天停止使用藥物。

正子斷層造影檢查目前已廣泛用於各種疾病的診斷、癌症分期、評估癌症治療的療效、心血管疾病、腦神經疾病、基因治療及藥物研發等基礎科學之研究,尤其在腫瘤部位評估較一般電腦斷層檢查更為準確,但正子斷層造影檢查費用較為昂貴,是否符合健保給付需由臨床專科主治醫師界定。 在進行這種檢查前,會先為受試者注射顯影劑氟化脫氧葡萄糖(18F-FDG)。 相比普通的葡萄糖分子,氟化脫氧葡萄糖的一個羥基基團被氟的放射性同位素氟-18取代,因此具有放射性,會持續向外放出正電子。 因為二碳位上的羥基被氟原子取代,氟化脫氧葡萄糖進入細胞被磷酸化後,不能被進一步代謝;又因帶有電荷,也不能通過細胞膜上的通道蛋白運出細胞。 因此,一旦氟化脫氧葡萄糖進入細胞,在氟-18衰變前,較長時間內都會以磷酸化形式留在細胞內。 癌細胞對葡萄糖的消耗量較高,因此,如果受試者體記憶體在癌細胞,在注射氟化脫氧葡萄糖後,癌細胞會攝入相對多的氟化脫氧葡萄糖。